

ТН ВЭД ЕАЭС 8531 10 300 0 ОКПД2 26.30.50.121

Соответствует ТР ЕАЭС о пожарной безопасности

Соответствует ТР ТС о взрывобезопасности

извещатель пожарный пламени «ИОЛИТ(-2)-Exd»

РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ ПАСПОРТ

СПР.425243.001-01 РЭ

Настоящее руководство по эксплуатации предназначено для изучения принципа работы и обеспечения правильной эксплуатации извещателей ИПЗ29 «ИОЛИТ-Exd», ИПЗ29/З30 «ИОЛИТ-2-Exd».

1 НАЗНАЧЕНИЕ ИЗДЕЛИЯ

- 1.1 Извещатели пожарные пламени ИП329 «ИОЛИТ-Exd», ИП329/330 «ИОЛИТ-2-Exd» (далее – извещатель) служат для обнаружения излучения пламени и предназначены для применения в системах пожарной сигнализации взрывоопасных объектов.
- 1.2 Извещатель варианта ИП329 «ИОЛИТ-Exd» реагирует на ультрафиолетовую (далее УФ) составляющую излучения пламени. Извещатель варианта ИП329/330 «ИОЛИТ-2-Exd» является двухдиапазонным и реагирует на УФ и инфракрасную (далее ИК) составляющие излучения пламени.

Извещатель позволяет обнаружить возгорания веществ как с высоким (нефтепродукты, древесина, полимерные материалы), так и с низким (спирты, метан, пропан, бутан) дымообразованием.

По чувствительности к тестовыми очагами ТП-5 и ТП-6 (по ГОСТ Р 53325) извещатели «ИОЛИТ-Ехd», «ИОЛИТ-2-Ехd» являются извещателями пламени **1-го класса**.

1.3 Извещатель «ИОЛИТ(-2)-Exd» выполнен во взрывозащищенном конструктивном исполнении с видом взрывозащиты «взрывонепроницаемая оболочка», соответствует требованиям ГОСТ 31610.0-2019, ГОСТ IEC 60079-1-2013, и имеют маркировку взрывозащиты «1Ex db IIC T6 Gb».

Извещатель предназначен для установки во взрывоопасных зонах классов 1 и 2 по ГОСТ IEC 60079-10-1-2013, и подключается в шлейфы сигнализации приемно-контрольных приборов (либо иных контроллеров) общего назначения.

- 1.4 Извещатель рассчитан на эксплуатацию при температуре окружающей среды от минус 55°C до плюс 55°C, относительной влажности воздуха 93% при температуре 40°C.
- 1.5 Степень защиты оболочки корпуса извещателя **IP66/IP67** по ГОСТ14254. Категория размещения **1** по ГОСТ 15150.
- 1.6 Извещатель устойчив к воздействию электромагнитных помех третьей степени жесткости по ГОСТ Р 53325-2012.

Уровень индустриальных радиопомех, создаваемый устройством при эксплуатации, не превышает норм, установленных для оборудования класса Б по ГОСТ Р 30805.22.

2 ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

- 2.1 Дальность обнаружения тестовых очагов ТП-5, ТП-6 (по ГОСТ Р 53325):
- ИП329 «ИОЛИТ-Exd» не менее **50 м**;
- ИП329/330 «ИОЛИТ-2-Exd» не менее **25 м**;
- 2.2 Телесный угол обзора извещателя не менее 90 угловых градусов.
- 2.3 Время срабатывания на тестовые очаги ТП-5 и ТП-6:
- ИП329 «ИОЛИТ-Exd» не более **10 секунд**;
- ИП329/330 «ИОЛИТ-2-Exd» не более **15 секунд**;
- 2.4 Извещатель **не реагирует** на прямое солнечное излучение, излучение искусственных источников света, а также излучение нагретых тел. Извещатель ИП329/330 «ИОЛИТ-2-Exd», работающий по тактике **УФ+ИК не реагирует** на рассеянное излучение, возникающее при проведении сварочных работ, и прочие помехи в УФ диапазоне.

Примечание. Во избежание ложных срабатываний на извещатель ИП329 «ИОЛИТ-Ехd» не должно попадать постороннего ультрафиолетового излучения, например при проведении сварочных работ, от неисправных ртутных ламп и т.п.

- 2.5 Извещатель может подключаться как по двухпроводной, так и по четырехпроводной схеме.
- 2.6 По двухпроводному шлейфу сигнализации электропитание извещателя и передача им тревожного извещения осуществляется при напряжении от 5 до 28 В.

Извещатель включается в шлейф сигнализации с соблюдением полярности.

- 2.7 Извещатель может находиться в следующих режимах:
- дежурный режим;
- режим **пожара** при появлении в поле зрения очага пламени, сопровождающегося излучением в УФ, либо в УФ и ИК областях спектра;
- режим **неисправности** при принятии решения о неисправности УФ-сенсора микроконтроллером извещателя;
- 2.8 ДЕЖУРНЫЙ РЕЖИМ извещателя отображается короткой световой вспышкой встроенного красного светодиода с интервалом около 3 секунд.

Средний ток, потребляемый извещателем в дежурном режиме:

- ИП329 «ИОЛИТ-Exd» не более 200 мкА:
- ИП329/330 «ИОЛИТ-2-Exd» не более **400 мкА**;
- 2.9 При СРАБАТЫВАНИИ тревожное извещение передается комплексом двух сигналов:
- электрическим, выражающимся в увеличении тока через извещатель;
- световым, выражающимся в непрерывном свечении встроенного светодиода.

Значение тока при срабатывании зависит от величины сопротивления внешнего дополнительного резистора, подключаемого к соответствующим клеммам (см. п.2.11).

- 2.10 Извещение о НЕИСПРАВНОСТИ передается комплексом двух сигналов:
- **электрическим** в виде кратковременного (на время около 5секунд) **обрыва ШС** каждые 10 минут (см. *примечание*);
- **световым** в виде периодической короткой световой вспышки (10мс каждую **секунду**) встроенного красного светодиода.

Примечание. Производится обрыв цепи шлейфа сигнализации или оконечного резистора, следующих за извещателем. Таким образом, приемно-контрольному прибору передается извещение о неисправности в шлейфе. Для возможности контроля прибором других извещателей в шлейфе такое отключение носит периодический характер.

2.11 Ток, потребляемый извещателем при срабатывании, зависит от напряжения на шлейфе сигнализации и определяется сопротивлением дополнительного резистора по формуле:

$$I_{CPAB} = (U_{IIIC} - 1,5)/R_{JI} + 0,5$$

где $U_{I\!I\!I\!C}$ – напряжение шлейфа сигнализации при срабатывании извещателя, **B**;

 R_{II} — сопротивление дополнительного резистора, **кОм**;

 I_{CPAE} — ток через извещатель при срабатывании, м**A**.

Для работы извещателя с приборами серии «Яхонт-И» при выпуске производителем устанавливается дополнительный резистор номинальным сопротивлением 2,2 кОм.

При осуществлении монтажа можно, при необходимости, сменить дополнительный резистор на номинал, обеспечивающий работу извещателя с другими ППКП, но не менее 1,4кОм.

- 2.12 При 4-х проводном подключении диапазон рабочих питающих напряжений извещателя составляет 8...28 В при токе потребления не более 20 мА.
- 2.13 Для передачи информации при 4-х проводном подключении извещатель имеет выходные реле НЕИСПРАВНОСТЬ и ПОЖАР. Выходные контакты реле являются контактами «сухого» типа и имеют гальваническую изоляцию от схемы извещателя.

Контакты НЕИСПРАВНОСТЬ замкнуты, когда извещатель находится в дежурном режиме и разомкнуты при неисправности извещателя или отсутствии его питания.

Контакты ПОЖАР замкнуты при срабатывании извещателя и разомкнуты во всех остальных режимах.

- 2.14 Максимально допустимые рабочие напряжение/ток, коммутируемые выходными контактами реле: **60B / 250мA.**
- 2.15 Извещатель оснащен интерфейсом с электрическими параметрами, соответствующими спецификации EIA **RS-485**. Активация интерфейса происходит при подаче питания при 4-х проводном подключении.

Обмен данными по интерфейсу осуществляется по протоколу MODBUS (RTU). Подробное описание системы команд протокола представлено на сайте www.specpribor.ru, а сокращенное в ПРИЛОЖЕНИИ Г.

При помощи интерфейса извещатель может взаимодействовать с компонентами системы пожарной сигнализации или автоматическими системами управления технологическими процессами (АСУТП), развернутыми на объекте.

2.16 При помощи интерфейса **RS-485** также осуществляется программирование параметров извещателя – тактики обнаружения, чувствительности и времени срабатывания.

Программирование по интерфейсу может быть выполнено при помощи персонального компьютера, подключенного к извещателю через преобразователь интерфейса RS485/USB или RS485/RS232. Программу конфигурирования извещателя, можно скачать с сайта www.specpribor.ru.

2.17 Извещатели могут программироваться на одну из следующих тактик:

УФ+**ИК** – принятие решения о сработке происходит только при обнаружении излучения в УФ и ИК диапазонах одновременно (недоступно для ИПЗ29 «ИОЛИТ-Exd»). Время срабатывания – не более 15 секунд.

УФ – принятие решения о сработке происходит при обнаружении излучения только в УФ диапазоне. Тактика позволяет увеличить дальность обнаружения тестовых очагов ТП-5, ТП-6 до 50м. Во избежание ложных срабатываний на извещатель не должно попадать постороннего ультрафиолетового излучения (см. примечание п.2.4).

Работа извещателя по тактике УФ реализована несколькими алгоритмами:

ТАКТИКА УФ-1 – тактика адаптивного времени срабатывания (от 5 до 30сек) – позволяет обеспечить высокую дальность обнаружения за счет увеличения времени срабатывания.

ТАКТИКА УФ-2 — тактика фиксированного времени срабатывания — решение о наличии пламени в поле зрения принимается за фиксированное время — 10 секунд. При этом, чем дальше от извещателя источник пламени, тем большей интенсивностью он должен обладать для его обнаружения.

ТАКТИКА УФ-3 – специальная быстродействующая тактика, при которой извещатель реагирует **на вспышку** огня.

Примечание. ТАКТИКУ УФ-1 рекомендуется использовать для обеспечения высокой обнаруживающей способности при невысоком быстродействии в **дальней*** зоне или высокого быстродействия в **ближней***. Так, при дальности 25м время срабатывания может составлять от 5 сек. для тестовых (ТП5,ТП6) и крупных очагов, и до 30 сек. для мелких очагов пламени.

ТАКТИКУ УФ-2 рекомендуется использовать, когда в дальней зоне важна быстрота обнаружения крупных очагов пламени при нечувствительности к малым или в ближней зоне важна высокая помехоустойчивость.

ТАКТИКА УФ-3 используется для обнаружения быстропротекающих процессов горения, например вспышки порохового заряда.

Для тактик **УФ-1, УФ-2** значение максимальной чувствительности соответствует гарантированному обнаружению тестовых очагов ТП5, ТП6 на расстоянии **50**м, для тактики **УФ+ИК** – **25**м. При уменьшенной чувствительности тестовые очаги ТП5, ТП6 обнаруживаются извещателем на расстоянии **12...15**м.

Для тактики $\mathbf{V}\Phi$ -3 уровень чувствительности извещателя выбирается в зависимости от массы заряда и расстояния до него. Тестовый очаг в виде горения 3...4 г. бездымного пироксили-

^{*} здесь и далее условно обозначены зоны удаленности: дальняя зона -20...50 м от извещателя; ближняя зона -1...20 м от извещателя.

^{2.18} Для тактик **УФ+ИК**, **УФ-2**, **УФ-3**, можно выбрать один из двух уровней чувствительности извещателя: **максимальный** и **уменьшенный**. Для тактики **УФ-1** всегда установлен максимальный уровень чувствительности.

нового пороха гарантированно обнаруживается на расстоянии 10 м при максимальной чувствительности и на расстоянии 3.5 м при уменьшенной чувствительности.

Дополнительно, для тактики $\mathbf{У}\Phi$ -3 можно выбрать быстродействие извещателя из двух значений времени срабатывания — $\mathbf{0.1c}$ или $\mathbf{0.5c}$.

Примечание. Уменьшение чувствительности рекомендуется при малых расстояниях до защищаемого объекта, а также для снижения уровня ложных срабатываний.

- 2.19 После срабатывания, автоматический переход в дежурный режим при устранении источника возгорания не предусмотрен. Сброс ТРЕВОЖНОГО РЕЖИМА производится снятием питания с извещателя на время не менее 3 сек., либо командой по интерфейсу.
- 2.20 Извещатель комплектуется кабельными вводами под бронекабель или металлорукав с диаметром обжатия кабеля 12..13мм, либо 17..19мм (с учетом добавочного уплотнительного кольца 9, см. ПРИЛОЖЕНИЕ Б, рис.Б.3).

По заказу, изделие может комплектоваться заглушкой кабельного ввода (в случае если изделие является оконечным в линии) вместо кабельного ввода.

- 2.21 Значение электрического сопротивления изоляции не менее 100 МОм.
- 2.22 Значение электрической прочности изоляции не менее 0,75 кВ.
- 2.23 Извещатель устойчив к воздействию электромагнитных помех третьей степени жесткости по ГОСТ Р 53325-2012.
 - 2.24 Показатели надежности:
 - а) извещатель рассчитан на круглосуточную непрерывную работу;
 - б) средняя наработка на отказ в дежурном режиме не менее 60000 ч;
 - в) назначенный срок службы 10 лет.
 - 2.25 Габаритные размеры не более 230х210х120мм с учетом крепежного устройства.
 - 2.26 Macca не более 2,0 кг.

3 КОМПЛЕКТНОСТЬ

3.1 Комплект поставки извещателя соответствует таблице:

Наименование	Условное обозначение	Кол -во	Примечание
1.Извещатель ИП329(/330) «ИОЛИТ(-2)-Exd» 2.Руководство по эксплуатации	СПР.425243.001 ТУ СПР.425243.001-01 РЭ	1	

4 УСТРОЙСТВО И РАБОТА

- 4.1 Извещатель представляет собой автоматическое оптикоэлектронное устройство, осуществляющее электрическую и световую сигнализацию при появлении в поле зрения очага пламени, сопровождающегося излучением в УФ(185 \div 260нм) области, либо в УФ(185 \div 260нм) и ИК(4,3 \div 4,4мкм) областях спектра.
 - 4.2 Общий вид и устройство извещателя приведены в ПРИЛОЖЕНИИ А.

Корпус извещателя представляет собой разборную взрывонепроницаемую оболочку со щелевой взрывозащитой, соответствующую требованиям ГОСТ 31610.0-2019 и ГОСТ IEC 60079-1-2013. Оболочка состоит из корпуса 1 и крышек 2, 3 с резиновыми уплотнительными кольцами 4. В передней крышке 2 герметично крепятся специальные стекла 5 и 16. На задней крышке 3 снаружи расположен шильдик 6 с маркировочными данными. Каждая крышка крепится к корпусу при помощи четырех винтов М4 с шестигранным углублением под ключ. Один из винтов пломбируется.

Внутри корпуса в передней части расположены платы обработки с радиоэлементами 7, в задней части - плата коммутации с клеммами для подключения 8.

На корпусе в средней части имеется шпилечный зажим для внешнего заземления 9.

В нижней части корпуса расположены герметизированные взрывонепроницаемые кабельные вводы 10, позволяющие ввести кабели круглого сечения с наружным диаметром 5...7 мм

при использовании уплотнительных колец типа «Б» и 7...10 мм при использовании уплотнительных колец типа «А» (ПРИЛОЖЕНИЕ Б.5). Ввод кабеля осуществляется через резиновое уплотнительное кольцо 11, зажимаемое штуцером. Диаметр резьбы кабельных вводов (штуцеров) - **трубная G1/2-В.**

Корпус извещателя крепится через козырек-скобу 12 к крепежному кронштейну 13. Кронштейн имеет 4 отверстия для крепления – см. разметку для крепления. Регулировка оптической оси извещателя осуществляется: по углу места (в пределах $\pm 19^{\circ}...-35^{\circ}$) - при помощи болтов 14, и по азимуту (в пределах $\pm 90^{\circ}$) при помощи болта с гайкой 15.

4.3 Принцип действия извещателя основан на измерении интенсивности УФ и ИК составляющих излучения пламени, сравнении ее с пороговым значением по заданному алгоритму, и управлении выходами при превышении порога. При четырехпроводном подключении схема осуществляет обмен информацией по интерфейсу RS485, а также управляет выходными реле НЕИСПРАВНОСТЬ и ПОЖАР.

Подключение извещателя в **двухпроводный** шлейф сигнализации осуществляется через контакты <1», <2», <3» и <4», причем <1» и <2» являются входными, а <2» и <6» - выходными. Контакты <1» и <3» для плюса, а контакты <2» и <4» для минуса питающего напряжения шлейфа сигнализации.

K контактам «5» и «6» подключается дополнительный резистор $R_{\rm д}$, задающий ток через извещатель в режиме срабатывания (см. п. 2.11). При пожаре транзисторный ключ VT1 подключает параллельно шлейфу сигнализации цепь, состоящую из последовательно соединенных светодиода VD1 и дополнительного резистора $R_{\rm d}$.

Схема выходного каскада извещателя приведена на рис. 4.1.

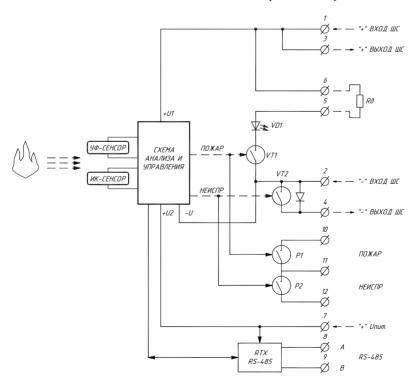


Рис. 4.1

При определении неисправности по сигналу схемы управления транзисторный ключ VT2 отключает контакт «4» от минуса питающего напряжения шлейфа сигнализации.

При подключении по **4-х проводной** схеме плюс питающего напряжения подается как на контакт «1», так и дополнительно на контакт «7». Минус напряжения подается на контакт «2».

Контакты «10», «11», «12» являются контактами выходных реле ПОЖАР и НЕИСПРАВНОСТЬ.

К контактам «8» и «9» осуществляется подключение линии интерфейса RS485.

5 ОБЕСПЕЧЕНИЕ ВЗРЫВОЗАЩИЩЕННОСТИ

- 5.1 Извещатель ИП329(/330) «ИОЛИТ(-2)-Exd» имеет взрывозащиту вида «взрывонепроницаемая облочка *d* », маркировку взрывозащиты «1Ex db IIC T6 Gb» и соответствует требованиям ГОСТ 31610.0-2019, ГОСТ IEC 60079-1-2013.
 - 5.2 Взрывозащищенность извещателя обеспечивается:
- заключением токоведущих частей во взрывонепроницаемую оболочку, соответствующую ГОСТ IEC 60079-1-2013, выдерживающую давление взрыва внутри и не допускающую его передачу в наружную взрывоопасную среду; части оболочки имеют взрывонепроницаемое цилиндрическое щелевое соединение с безопасными зазорами и длинами, соответствующими ГОСТ IEC 60079-1-2013:
- гальваническим антикоррозионным покрытием сопрягаемых взрывозащитных поверхностей для защиты от коррозии;
- взрывонепроницаемыми кабельными вводами, герметизированными резиновыми уплотнительными кольцами;
 - ограничением максимальной температуры поверхности корпуса;
 - заземлением корпуса при помощи шпилечного зажима для внешнего заземления;
 - наличием предупредительной маркировки «ОТКРЫВАТЬ, ОТКЛЮЧИВ ОТ СЕТИ»;
 - пломбированием крепежных элементов частей оболочки.
- 5.3 Чертеж средств взрывозащиты приведен на рис.А.1 ПРИЛОЖЕНИЯ А. Сопрягаемые поверхности, обеспечивающие взрывозащиту, обозначены словом «Взрыв».

6 МАРКИРОВКА И ПЛОМБИРОВАНИЕ

- 6.1 Маркировка соответствует чертежам предприятия-изготовителя и ГОСТ 26828.
- 6.2 На передней крышке извещателя вокруг смотрового окна имеется маркировка, включающая наименование «ИП329 «ИОЛИТ-Ехd», либо «ИП329/330 «ИОЛИТ-2-Ехd», маркировку взрывозащиты и предупредительную надпись «ОТКРЫВАТЬ, ОТКЛЮЧИВ ОТ СЕТИ».

Передняя крышка опломбирована заводской гарантийной пломбой и не предназначена для вскрытия в процессе эксплуатации.

- 6.3 На задней крышке извещателя имеется шильдик с маркировкой, где нанесены:
- товарный знак предприятия-изготовителя и наименование «ИП329 «ИОЛИТ-Exd», либо «ИП329/330 «ИОЛИТ-2-Exd»;
 - маркировка взрывозащиты «1Ex db IIC T6 Gb»;
 - наименование органа по сертификации и номер сертификата взрывозащиты;
 - знаки соответствия (знаки обращения на рынке) и специальный знак «Ex»;
 - сведения о рабочей температуре «-55°C<Ta<+55°C» и степень защиты оболочки IP66/IP67;
 - предупредительную надпись «ОТКРЫВАТЬ, ОТКЛЮЧИВ ОТ СЕТИ»;
 - заводской номер, квартал изготовления и год выпуска (2 последние цифры).

Задняя крышка пломбируется организацией, осуществляющей монтаж и обслуживание извещателя.

7 УПАКОВЫВАНИЕ

- 7.1 Упаковывание извещателя производится в соответствии с чертежами предприятия изготовителя и ГОСТ 9.014 по варианту внутренней упаковки ВУ-5.
- 7.3 Упакованные изделия в зависимости от отгрузочной партии укладываются либо в индивидуальную, либо общую транспортную тару – картонную коробку. В транспортную тару вкладывается комплект руководств по эксплуатации, упакованный в полиэтиленовый пакет.
- 7.4 В каждую транспортную тару прикладывается упаковочный лист, содержащий следующие сведения: а) наименование и обозначение изделий; б) количество и тип приложенной эксплуатационной документации; в) дату упаковки; г) подпись или штамп ответственного за упаковку.
- 7.5 Маркировка транспортной тары должна производиться в соответствии с ГОСТ 14192 и иметь манипуляционные знаки №1, №3, №11.

8 УКАЗАНИЕ МЕР БЕЗОПАСНОСТИ

- 8.1 При монтаже, эксплуатации и техническом обслуживании извещателя необходимо соблюдать требования следующих нормативно-технических документов: ГОСТ IEC 60079-14-2013, ГОСТ 31610.17-2012, гл. 7.3. ПУЭ, ПТЭЭП, ПОТЭУ и настоящего документа.
- 8.2 При работе с извещателем необходимо выполнять общие правила техники безопасности, действующие на объекте.
- 8.3 Запрещается эксплуатация извещателя с поврежденными: корпусом, кабельными вволами.
- 8.4 По способу защиты человека от поражения электрическим током извещатель относится к классу III по ГОСТ 12.2.007.0.

9 ОБЕСПЕЧЕНИЕ ВЗРЫВОЗАЩИЩЕННОСТИ ПРИ МОНТАЖЕ И ЭКСПЛУАТАЦИИ

- 9.1 При монтаже и эксплуатации извещателя должны соблюдаться требования следующих нормативных документов: ГОСТ IEC 60079-14-2013; гл. 7.3. ПУЭ; ПТЭЭП; ПОТЭУ; настоящего руководства.
 - 9.2 Перед монтажом извещатель должен быть осмотрен на предмет:
 - отсутствия механических повреждений оболочки (корпуса, крышек, кабельных вводов);

ВНИМАНИЕ: не допускаются механические повреждения сопрягаемых взрывозащитных поверхностей (поверхностей, обозначенных словом «Взрыв» - см. ПРИЛОЖЕНИЕ А).

- наличия средств уплотнения кабельных вводов (уплотнительных колец);
- наличия маркировки взрывозащиты и предупредительных надписей на крышках;
- наличия пломбы на передней крышке корпуса.
- 9.3 Тип кабельных линий подвода питания к извещателю и способ их прокладки в пределах взрывоопасной зоны должны соответствовать п.9 ГОСТ IEC60079-14-2013, и гл.7.3 ПУЭ.
 - 9.4 Монтажные работы следует проводить только на обесточенном электрооборудовании.
- 9.5 Корпус извещателя должен быть надежно заземлен при эксплуатации. Заземление должно производиться одножильным или многожильным медным проводом общим сечением не менее 1,5 мм² (или сечением, не меньше сечения проводов питания извещателя).
- 9.6 После монтажа крышка извещателя должна быть затянута штатными винтами и опломбирована.
- 9.7 В целях сохранения взрывозащищенности извещатель не подлежит ремонту у потребителя.

10 ПОРЯДОК УСТАНОВКИ И РАБОТЫ

10.1 Перед монтажом следует при помощи интерфейса RS485 запрограммировать параметры извещателя (см. п.п. 2.15-2.18) и при необходимости заменить подключенный к контактам «5», «6» добавочный резистор (см. п. 2.11).

Для доступа к клеммам подключения следует снять заднюю крышку (поз. **3** ПРИЛОЖЕНИЯ A), предварительно отвернув четыре винта при помощи шестигранного ключа на 3 мм.

10.2 Схемы подключения извещателя приведены в ПРИЛОЖЕНИИ В.

10.3 Установка извещателя производится на стене или иной плоской вертикальной поверхности, не подверженной вибрациям, четырьмя винтами (шурупами, дюбелями) диаметром до 6 мм в соответствии с разметкой, указанной в ПРИЛОЖЕНИИ А.

<u>ВНИМАНИЕ!</u> Качество функционирования извещателя не гарантируется, если электромагнитная обстановка в месте его установки не соответствует условиям эксплуатации, указанным в пункте 1.6 настоящего руководства.

10.4 Для монтажа следует использовать кабель круглого сечения в резиновой или ПВХ оболочке с заполнением между жилами и наружным диаметром поясной изоляции от 7 до 10 мм (или от 5 до 7 мм при использовании малых уплотнительных колец типа Б).

10.5 Установку извещателя производить в следующей последовательности:

- при помощи ключей S10 открутить болт M6 (поз.15 ПРИЛОЖЕНИЯ A) и отсоединить извещатель с козырьком от крепежного кронштейна;
- закрепить крепежный кронштейн (поз. 13 ПРИЛОЖЕНИЯ A) на вертикальной поверхности в соответствии с п. 7.3:
 - снять заднюю крышку (поз. 3 ПРИЛОЖЕНИЯ А), отвернув четыре винта;
 - выкрутить штуцера и извлечь из них прижимные шайбы и уплотнительные кольца;

Примечание: при использовании кабеля с диаметром поясной изоляции 5...7 мм следует заменить уплотнительные кольца (см. ПРИЛОЖЕНИЕ Б.5).

- осуществить разделку кабелей для монтажа в соответствии с ПРИЛОЖЕНИЕМ Б;
- одеть на поясную изоляцию и оболочку кабелей прижимные шайбы, уплотнительные кольца и гайки, продеть кабели в кабельные вводы (концы изоляции кабелей должны выступать внутрь корпуса не менее чем на 5 мм), закрутить (не затягивая) штуцера в корпус;
- в соответствии с выбранной схемой подключения, руководствуясь п. 4.3 и ПРИЛОЖЕНИЕМ В, подключить жилы кабелей к контактам клеммных колодок (поз. 8 ПРИЛОЖЕНИЯ А);
- используя ключ S27, затянуть и законтрить контргайками штуцера; проверить качество зажима кабелей в кабельных вводах на выдёргивание;
 - используя ключи S27 и S32, затянуть и законтрить гайку уплотнения наружной оболочки;
- установить заднюю крышку извещателя и закрепить её шестигранными винтами; один из крепежных винтов опломбировать;
- подключить провод внешнего заземления к зажиму заземления (поз. 9 ПРИЛОЖЕНИЯ А);
 покрыть зажим слоем консистентной смазки;
- соединить извещатель с крепежным кронштейном при помощи болта с гайкой (поз. 15 ПРИЛОЖЕНИЯ A);
- при помощи ключей S10 отъюстировать расположение оптической оси извещателя, при ослаблении 2-х болтов (поз. 14 ПРИЛОЖЕНИЯ А) по углу места, и болта с гайкой (поз. 15 ПРИЛОЖЕНИЯ А) по азимуту; после юстировки болты затянуть.
- 10.6 После подачи питания на извещатель (по шлейфу сигнализации или от источника питания) он должен включиться в дежурном режиме с выдачей индикации согласно п.2.8.

11 ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

- 11.1 Техническое обслуживание извещателя должно осуществляться в соответствии с требованиями ГОСТ IEC 31610.17-2013 специально обученным персоналом, ознакомленным с данным руководством.
- 11.2 В процессе эксплуатации извещатели **систематически** должны подвергаться внешнему осмотру, очистке оптической части от пыли и грязи и проверке работоспособности.

Периодичность обслуживания устанавливается исходя из условий эксплуатации, но не реже одного раза в год.

- 11.3 При внешнем осмотре проверяется:
- индикация извещателем дежурного режима;
- отсутствие видимых механических повреждений элементов корпуса;
- наличие и целостность маркировки взрывозащиты и предупредительных надписей;

- целостность пломб:
- состояние уплотнения вводимых кабелей (при подергивании и прокручивании кабель не должен перемещаться и проворачиваться в узле уплотнения) при необходимости штуцера подтянуть;
 - состояние заземляющего проводника и зажима заземления.
- 11.4 Очистку оптического окна извещателя рекомендуется производить по мере запыленности и загрязнения, но не реже чем 1 раз в год. Очистка проводится путем удаления с корпуса пыли щеткой или влажной тканью и очистки окна фланелью, смоченной спиртом-ректификатом.
- 11.5 Проверка работоспособности производится при помощи специальных имитаторов пламени, допущенных к применению в данной зоне в соответствии с классом ее опасности.

При возможности использования открытого пламени для проверки работоспособности рекомендуется использовать свечу или зажигалку. Извещатель на пламя свечи или зажигалки (высота пламени не менее 3см) должен срабатывать за время не более 15 секунд на расстоянии до:

- ИП329 «ИОЛИТ-Exd» 3м;
- ИП329/330 «ИОЛИТ-2-Exd» 1,5м;

Тестирование извещателей ИП329(/330) «ИОЛИТ(-2)-Ехd» во взрывоопасной зоне может производится при помощи взрывозащищенного тестового фонаря «ИОЛИТ-ТЕСТ» (см. п.п. 7.1-7.4 РЭ на фонарь тестовый «ИОЛИТ-ТЕСТ» СПР.676211.001 РЭ). Включение функции дистанционной сработки извещателя ИП329/330 «ИОЛИТ-2-Ехd» от тестового фонаря «ИОЛИТ-ТЕСТ» производится в программе конфигурации извещателя через интерфейс **RS-485** (см. Приложение Г, п.2 настоящего РЭ и п.6.1.8 «Извещатели пламени ИП329(/330) ИОЛИТ(-2)-Ехd; Описание протокола обмена по интерфейсу RS485» СПР.425513.003-01 Д2 (версия 2.0)).

12 ВОЗМОЖНЫЕ НЕИСПРАВНОСТИ И МЕТОДЫ ИХ УСТРАНЕНИЯ

12.1 Перечень возможных неисправностей, которые допускается устранять силами потребителя, и способы их устранения приведены в таблице 12.1. Устранение неисправностей должно осуществляться персоналом, изучившим эксплуатационную документацию.

<u>ВНИМАНИЕ!</u> Изделие не подлежит ремонту у потребителя. В целях сохранения взрывозащищенности ремонт изделия должен производиться только на заводе-изготовителе. Таблипа 12.1

Вид неисправности, внешнее проявление	Вероятная причина	Способы устранения
1) Извещатель не работает.	цепи питания, обрыв в цепи	Проверить целостность цепи питания и полярность подключения. Проверить целостность и правильность подключения добавочного резистора.
RS-485 извещателя. 3) Извещатель не реаги-	Отсутствует напряжение питания на клемме 7 извещателя. Загрязнение оптического	Установить перемычку между клеммами 1 и 7 извещателя. Удалить загрязнения, протереть опти-
рует на пламя.	вещателя.	ческое окно спиртом-ректификатом.

12.2 Критическим отказом считается потеря работоспособности извещателя, повреждение его корпуса или кабельного ввода.

К возможным ошибкам персонала (пользователя), приводящим к аварийным режимам работы извещателя, относятся: а) неправильное подключение извещателя; б) неправильная установка извещателя по месту эксплуатации; в) несоблюдение сроков технического обслуживания.

Для предотвращения возможных ошибок персонала, приводящих к аварийным режимам работы, при монтаже и эксплуатации извещателя следует неукоснительно руководствоваться разделами 8, 9, 10, 11 настоящего РЭ.

13 ТРАНСПОРТИРОВАНИЕ, ХРАНЕНИЕ И УТИЛИЗАЦИЯ

- 13.1 Извещатели в упаковке предприятия-изготовителя транспортируются всеми видами крытого транспорта на любые расстояния с соблюдением требований действующих нормативных документов.
- 13.2 Условия транспортирования должны соответствовать условиям хранения 5 по ГОСТ 15150.
- 13.3 Хранение извещателей в упаковке для транспортирования должно соответствовать условиям хранения 1 по ГОСТ 15150. Воздух в помещении для хранения извещателя не должен содержать паров кислот и шелочей, а также газов, вызывающих коррозию.
- 13.4 Назначенный срок хранения извещателей в упаковке изготовителя без переконсервации 2 гола.
- 13.5 Извещатель и его составные части не содержат компонентов и веществ, требующих особых условий утилизации. Утилизация осуществляется в порядке, предусмотренном эксплуатирующей организацией.

14 ГАРАНТИИ ИЗГОТОВИТЕЛЯ

- 14.1 Предприятие-изготовитель гарантирует соответствие извещателя требованиям технических условий СПР.425243.001ТУ при соблюдении потребителем условий эксплуатации, транспортирования и хранения.
 - 14.2 Гарантийный срок эксплуатации 5 лет с момента изготовления.

15 СВЕДЕНИЯ ОБ ИЗГОТОВИТЕЛЕ

ООО «СПЕЦПРИБОР», 420088, г. Казань, ул. 1-я Владимирская, 108

Тел.: (843) 207-00-66

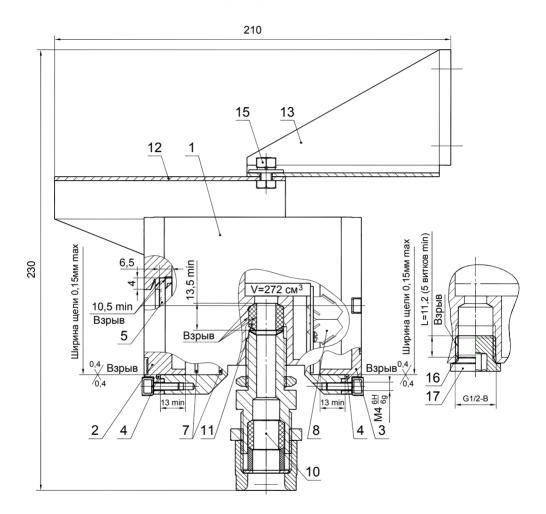
E-mail: info@specpribor.ru http://www.specpribor.ru

16 СВИДЕТЕЛЬСТВО О ПРИЕМКЕ И УПАКОВЫВАНИИ

		заводской номер
Managrama wa wangang wili wa	□ ИП329 «ИОЛИТ-Exd»	
Извещатель пожарный пламени	□ ИП329/330 «ИОЛИТ-2-Exd»	
соответствует техническим услов	иям СПР.425243.001 ТУ и признан год	ным к эксплуатации.
	Дата выпуска	
М.П.		
	Начальник ГТК	
Дата упаковывания		
Упаковывание произвел		

17 СВЕДЕНИЯ О РЕКЛАМАЦИЯХ

При обнаружении заводских дефектов или отказе извещателя в течение гарантийного срока потребителем должен быть составлен рекламационный акт, с которым изделие направляется предприятию-изготовителю с обязательным приложением паспорта.

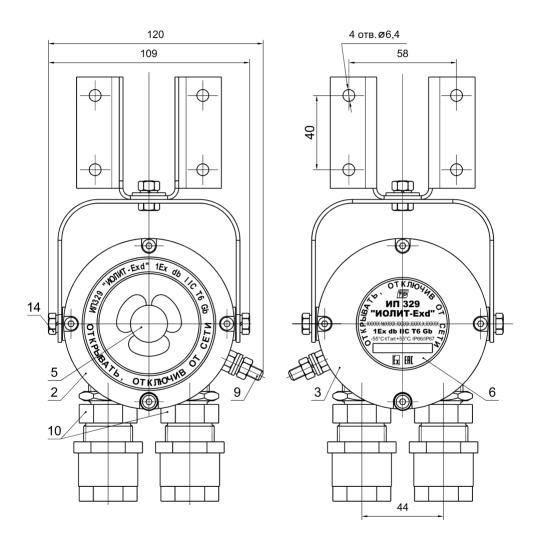

ВНИМАНИЕ! Без приложения настоящего документа и при отсутствии рекламационного акта претензии не принимаются.

18 СВЕДЕНИЯ О СЕРТИФИКАЦИИ

- 18.1 Извещатель сертифицирован на соответствие техническому регламенту ТР ЕАЭС 043/2017
- 18.2 Извещатель сертифицирован на соответствие техническому регламенту ТР ТС 012/2011.
- 18.3 Актуальная информация о сертификатах изделия размещена на сайте предприятияизготовителя – www.specpribor.ru.

приложение а

Рис. А.1 Чертеж средств взрывозащиты

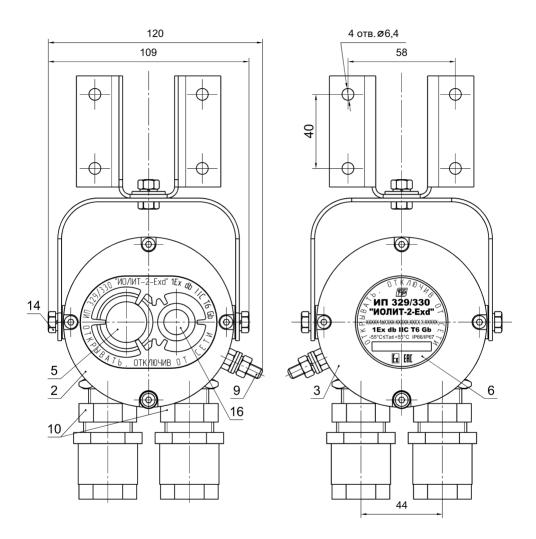


1. Корпус	10. Кабельный ввод в сборе
2. Передняя крышка корпуса	11. Уплотнительное кольцо кабельного ввода
3. Задняя крышка корпуса	12. Козырек-скоба
4. Уплотнительное кольцо крышки	13. Крепежный кронштейн
5. Оптическое окно (стекло)	15. Регулировочная гайка по азимуту
7. Плата с радиоэлементами	16. Заглушка СПР.713311.003
8. Клеммы для внешних подключений	17. Уплотнительное кольцо заглушки

приложение а

(продолжение)

Рис. А.2 Внешний вид ИП329 ИОЛИТ-Exd

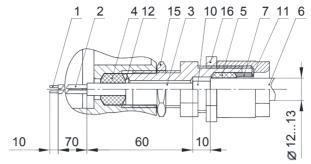


2. Передняя крышка корпуса	9. Шпилечный зажим внешнего заземления
3. Задняя крышка корпуса	10. Кабельный штуцер ШБМ-Ехс в сборе СПР.305331.003
5. Оптическое окно (стекло)	14. Регулировочный болт по углу места
6. Маркировочная табличка	

приложение а

(продолжение)

Рис. А.3 Внешний вид ИП329/330 ИОЛИТ-2-Exd



2. Передняя крышка корпуса	9. Шпилечный зажим внешнего заземления
3. Задняя крышка корпуса	10. Кабельный штуцер ШБМ-Exd в сборе СПР.305331.003
5. Оптическое окно (стекло) – УФ-канал	14. Регулировочный болт по углу места
6. Маркировочная табличка	16. Оптическое окно (стекло) – ИК-канал

приложение Б

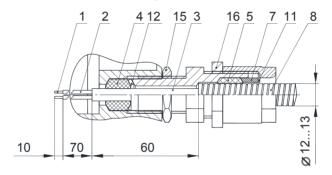

Разделка кабелей и схема обжима в штуцере

Рис. Б.1 Бронированный кабель в штуцере ШБМ-Exd

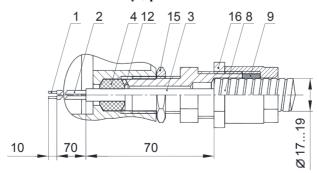
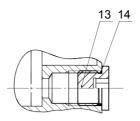

Рекомендуемый бронекабель марки КВБбШв-4х1 или КВБбШв-4х1,5

Рис. Б.2 Небронированный кабель в металлорукаве в внешним диаметром 12..13мм в штуцере ШБМ-Ехd

ВНИМАНИЕ! Применение металлорукава допустимо только во взрывоопасных зонах класса 2.


Рис. Б.3 Небронированный кабель в металлорукаве в внешним диаметром 17..19мм в штуцере ШБМ-Ехd

При монтаже металлорукава с внешним диаметром 17...19мм детали поз.5,7,11 из штуцера удаляются и вставляется уплотнительное кольцо 9 из комплекта поставки.

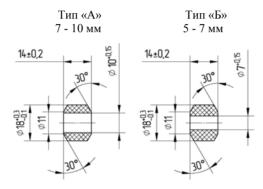
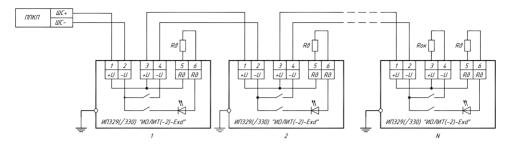

ВНИМАНИЕ! Применение металлорукава допустимо только во взрывоопасных зонах класса 2.

Рис. Б.4 Глушение неиспользуемого кабельного ввода оконечной заглушкой:

Б.5 Уплотнительные кольца кабельного ввода


Кольцо уплотнительное поз.11 ПРИЛОЖЕНИЯ А, поз.4 ПРИЛОЖЕНИЯ Б для кабеля наружным диаметром:

1-	Жила	9-	Кольцо уплотнительное, диаметр обжатия
			1719мм
2-	Изоляция жилы	10-	Броня бронекабеля
3-	Поясная изоляция	11-	Шайба
4-	Кольцо уплотнительное, диаметр	12-	Косая шайба
	обжатия тип «А» - 710 мм, тип		
	«Б» - 57 мм		
5-	Кольцо уплотнительное, диаметр	13-	Заглушка СПР.713311.003
	обжатия 1213мм		
6-	Оболочка бронекабеля	14-	Уплотнительное кольцо заглушки
7-	Кольцо прижимное	15-	Контргайка штуцера
8-	Металлорукав	16-	Контргайка

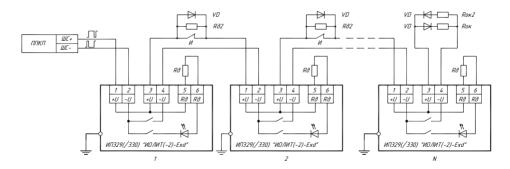
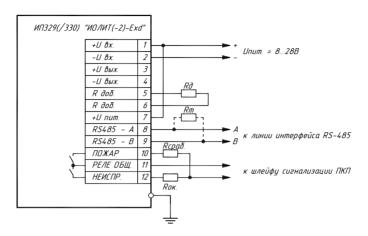

приложение в

Схема подключения ИП329(/330) «ИОЛИТ(-2)-Ехd» в двухпроводный однополярный шлейф сигнализации

		N max			
Тип прибора « ПКП »	R доп	ИП329 «ИОЛИТ-Ехd»	ИП329/330 «ИОЛИТ-2-Exd»	R ок для числа извещателей N	
серия «Яхонт-И» (тип ШС - АКТИВ)	2,2кОм ±5%	8	3	8,2 кОм±5% — для N= 15 12,0 кОм±5% — для N= 68	
«Сигнал-20П» тип ШС-1	2,2кОм ±5%	8		4,7кОм±5% – для N= 18	

Схема подключения ИП329(/330) «ИОЛИТ(-2)-Exd» в двухпроводный двуполярный шлейф сигнализации

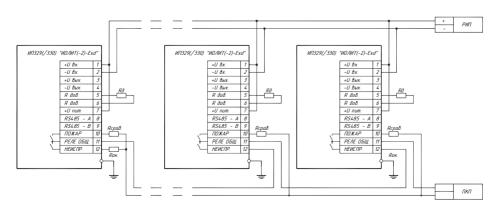

- «И» пассивные (нетокопотребляющие) извещатели с нормально-замкнутыми контактами;
- Rд2 дополнительный резистор для пассивных извещателей;
- Roк2 оконечный резистор для пассивных извещателей;
- Roк оконечный резистор для активных (токопотребляющих) извещателей;
- VD диоды типа КД521, 1N4148 и т.п.;

(номиналы резисторов и количество извещателей N выбираются исходя из типа прибора).

приложение в

(продолжение)

Внешние подключения к извещателю ИП329(/330) «ИОЛИТ(-2)-Exd» при 4-х проводной схеме подключения


Rt = 120 Ом — терминальный резистор линии интерфейса (при необходимости устанавливается на оконечном извещателе в линии).

 Rcpaб – резистор, задающий для ПКП режим срабатывания извещателя (при параллельном соединении с Rok)

Roк – оконечный для ПКП резистор, задающий дежурный режим.

Например, для «Сигнал-20П» (тип ШС-1): Roк = 4,7 кОм, Rcpaб = 3,0 кОм (для реж. Внимание), Rcpaб = 1,0 кОм (для реж. ПОЖАР)

Подключения нескольких извещателей ИП329(/330) «ИОЛИТ(-2)-Exd» по 4-х проводной схеме

приложение г

Краткое описание протокола обмена по интерфейсу RS485

(подробное описание представлено на сайте www.specpribor.ru)

1. В качестве ведущего узла выступает персональный компьютер либо программируемый логический контроллер, в качестве ведомых узлов – извещатель ИП329(/330) «ИОЛИТ(-2)-Exd», и любые другие устройства, поддерживающие классический протокол MODBUS-RTU.

Запросы ведущего узла - индивидуальные (адресуемые к конкретному узлу). При обнаружении ошибок в получении запросов, либо невозможности выполнения полученной команды, ведомый узел, в качестве ответа, генерирует сообщение об ошибке.

Формат байта 8N1 — 8 бит данных, без контроля паритета, 1 стоп бит. Длина кадра не должна превышать 8 байт. Контроль окончания кадра осуществляется при помощи интервала молчания, длиной не менее времени передачи 3.5 байт.

2. Регистры извещателя ИП329(/330) «ИОЛИТ(-2)-Exd»:

№	ФУНК- ЦИИ	АДРЕС РЕГИСТРА	ФОРМАТ	НАИМЕНОВАНИЕ ПАРАМЕТРА	значения
1	03h	0000h	WORD	ID устройства	= 16 : «ИОЛИТ(-2)-Exd»
2	03h, 06h	0001h	WORD	Сетевой адрес	1 ÷ 247
3	03h, 06h	0002h	WORD	Скорость обмена	$ \begin{array}{llllllllllllllllllllllllllllllllllll$
4	03h	0003h	WORD	Статус (состояние)	=0: - НОРМА =1: - ПОЖАР =2: - НЕИСПРАВНОСТЬ
5	03h, 06h	0004h	WORD	ТАКТИКА / ЧУВСТВ-СТЬ/ ВРЕМЯ (см. п.п.2.17, 2.18)	=0: - УΦ-1 =8: - УΦ+ИК / MAX* =2: - УΦ-2/MAX* =9: - УΦ+ИК / MIN =3: - УΦ-2/MIN =4: - УΦ-3 / MIN / 0,1c =5: - УΦ-3 / MAX / 0,1c =6: - УΦ-3 / MIN / 0,5c =7: - УΦ-3 / MAX / 0,5c
6	03h	0005h	WORD	ФИКСАЦИЯ	=0: – С ФИКСАЦИЕЙ
7	06h	0006h	WORD	СБРОС	При записи числа AA55h происходит сброс состояния «ПОЖАР»
8	03h, 06h	0007h	WORD	управление каналом детектирования мо- дулированного УФ - сигнала тестового фонаря «ИОЛИТ- ТЕСТ» (см. n.11.5)	=0: – канал детектирования отключен* =1: – канал детектирования включен

Функция **03h** – чтение регистров.

Функция **06h** – установка регистра.

^{* -} выделены значения по умолчанию, соответствующие заводской настройке.

^{3.} Если параметры интерфейса извещателя неизвестны, то следует в течение первых 3...5 сек после подачи питания обратится к извещателю на дефолтных параметрах интерфейса – адрес **247**, скорость **9600** бод.

Через 3...5 секунд извещатель переходит к параметрам, заданным регистрами 0001h, 0002h.